80697-72-9; 4b, 80697-73-0; 4c, 80697-74-1; 4d, 80719-01-3; 4e, 80697-75-2; 5a, 67583-11-3; 5b, 80697-76-3; 5c, 80052-14-8; 5d, 69306-31-6; 6a, 80697-77-4; 6b, 67551-66-0; 6c, 80697-78-5; 6d, 80719-02-4; 6e, 67670-43-3; 6f, 80697-79-6; 6g, 80719-03-5; Fe^{III}-

[TPP][Cl], 16456-81-8; 3a, 133-07-3; 3b, 133-06-2; Fe^{III}[T(p-Cl)-PP][Cl], 36965-70-5; Fe^{III}[TTP][Cl], 19496-18-5; Fe^{III}[OEP][Cl], 28755-93-3; n-C4HoNH2, 109-73-9; Fe[TPP][CN-n-C4Ho][NH2-n-C₄H₉], 80719-68-2.

> Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60201

Synthesis and Characterization of Some Ruthenium-Phosphoniodithiocarboxylate Complexes

THOMAS R. GAFFNEY and JAMES A. IBERS*

Received August 10, 1981

Addition of CS₂ to RuClH(CO)(PCy₃)₂ affords the cation $[RuH(CO)(S_2CPCy_3)(PCy_3)_2]^+$, which has been isolated as the tetraphenylborate salt. The closely related complex $[RuCl(CO)(S_2CPCy_3)(PCy_3)_2][BPh_4]$ is formed when the zwitterion ligand S_2CPCy_3 is added to a methanol suspension of $RuCl_2(CO)(PCy_3)_2$ and NaBPh₄. The reaction of carbonyl sulfide with $RuClH(CO)(PCy_3)_2$ results in the formation of $RuClH(CO)_2(PCy_3)_2$.

Carbon disulfide is known to insert into metal-hydride bonds to give metal dithioformates.¹⁻⁵ Recently it has become apparent that metal-phosphoniodithiocarboxylate complexes, $M(S_2CPR_3)L_n$, may be formed from the addition of CS_2 to metal-phosphine complexes.⁶⁻⁸ We report the syntheses of several ruthenium-phosphoniodithiocarboxylate complexes and one reaction in which formation of a phosphoniodithiocarboxylato ligand is favored over formation of a dithioformato ligand when a polar solvent is employed.

Results and Discussion

While CS_2 inserts into the RuH bond of RuClH(CO)- $(PCy_3)_2$ (Cy = cyclohexyl) to afford RuCl(S₂CH)(CO)- $(PCy_3)_{2}^{2}$ we find that in a polar solvent (ethanol) a different reaction occurs. When CS_2 is added to an ethanol suspension of RuClH(CO)(PCy₃)₂, the yellow-orange solid dissolves and a purple solution is formed. Addition of NaBPh₄ to the solution precipitates [RuH(CO)(S₂CPCy₃)(PCy₃)₂][BPh₄] (eq 1). The yield of the salt is low, as expected since some of the $RuClH(CO)(PCy_3)_2$ starting material must serve as a source of PCy₃.

$$RuClH(CO)(PCy_3)_2 + CS_2 \xrightarrow{EtOH}_{NaBPh_4}$$

$$[RuH(CO)(S_2CPCy_3)(PCy_3)_2][BPh_4] (1)$$

Coordination of CS₂ and subsequent transfer of a PCy₃ ligand to the carbon atom of CS_2 could lead to the formation of the phosphoniodithiocarboxylato ligand. Alternatively, phosphine dissociation could lead to the formation of the zwitterion adduct S_2CPR_3 , which could then react with $RuClH(CO)(PCy_3)_2$ to give the insertion product. We have found that direct addition of a zwitterion adduct, S_2CPR_3 (R = Cy, Et), to $RuClH(CO)(PCy_3)_2$ results in the facile for-

- (1) Moers, F. G.; ten Hoedt, R. W. M.; Langhout, J. P. Inorg. Chem. 1973, 12, 2196-2198. Moers, F. G.; ten Hoedt, R. W. M.; Langhout, J. P. J. Organomet.
- (2)Chem. 1974, 65, 93-98. Robinson, S. D.; Sahajpal, A. Inorg. Chem. 1977, 16, 2718-2722. Yaneff, P. V. Coord. Chem. Rev. 1977, 23, 183-220 and references
- (4) therein.
- Butler, I. S.; Fenster, A. E. J. Organomet. Chem. 1974, 66, 161-194. Armit, P. W.; Sime, W. J.; Stephenson, T. A.; Scott, L. J. Oganomet. Chem., 1978, 161, 391-406. Werner, H.; Bertleff, W. Chem. Ber. 1980, 113, 267-273. Clark, G. R.; Collins, T. J.; James, S. M.; Roper, W. R.; Town, K. G.
- (8) J. Chem. Soc., Chem. Commun. 1976, 475-476.

mation of the cation $[RuH(CO)(S_2CPR_3)(PCy_3)_2]^+$, which we have isolated as the tetraphenylborate salt (R = Cy, 1; R) = Et, 2), as shown in eq 2. Although the formation of the

$$RuClH(CO)(PCy_3)_2 + S_2CPR_3 \xrightarrow[NaBPh_4]{MeOH} [RuH(CO)(S_2CPR_3)(PCy_3)_2][BPh_4] (2)$$

phosphoniodithiocarboxylato ligand could be regarded as an insertion of CS_2 into a RuP bond, we believe from (2) that it is more likely that reaction 1 proceeds via disproportionation.

The infrared spectra of 1 and 2 exhibit one terminal carbonyl stretching vibration and a band between 1050 and 950 cm^{-1} that we suggest is $\nu(CS)$ of the S₂CPR₃ ligand⁷ (Table I). Each complex also exhibits a very weak band at ~ 2000 cm^{-1} that may be attributed to $\nu(Ru-H)$, but the low intensity of this absorption precludes a definite assignment. The complexes exhibit several strong bands between 750 and 700 cm⁻¹ that might be attributed to $\nu(CS_2)_{sym}$.⁵ However, these bands are apparently not observed in other phosphoniodithiocarboxylate complexes. The ³¹P{¹H} NMR spectra of 1 and 2 consist of an A_2X pattern, consistent with the presence of two magnetically equivalent and one magnetically inequivalent PR₃ group. The small values of the coupling constants (see Table I) are indicative of long-range coupling.^{6,7} Three isomers that should exhibit similar spectra are

Although phosphonium-betaine ligands (isomer III) are formed when CS_2 is added to similar metal complexes,^{7,9} the ¹H NMR spectra are consistent only with isomers I and II as the spectra exhibit a hydride resonance (Figure 1) that is split into a triplet by two equivalent PR₃ ligands and further split into a doublet by a more distant PR₃ group. The betaine proton of isomer III would be expected to appear further downfield^{7,9} ($\delta \simeq 6$) and should couple more strongly to the

Ashworth, T. V.; Singleton, E.; Laing, M. J. Chem. Soc., Chem. Com-

(9)

mun. 1976, 875-876.

^{0020-1669/82/1321-2062\$01.25/0 © 1982} American Chemical Society

Table I.	Infrared	and	NMR	Data	of	the Complexes
----------	----------	-----	-----	------	----	---------------

¹ H NMR, ^α δ				
compd	hydride	alkyl	³¹ P NMR ^a	IR absn ^b
$[RuH(CO)(S_2CPCy_3)_2(PCy_3)_2][BPh_4] (1)$	$-10.75 \text{ (dt, } {}^{2}J(\text{PH}) = 22.0,$ ${}^{4}J(\text{PH}) = 6.1)$	1.88 (s) 1.48 (s) 1.24 (s)	66.3 (d) 22.8 (t, ${}^{4}J(PP) = 8.6$)	1998 (vw) ν (RuH)? 1938 (vs) ν (CO) 964 (m) ν (CS) 741 (vs) 730 (vs) ν (CS ₂) _{sym} ? 703 (vs)
$[RuH(CO)(S_2CPEt_3)(PCy_3)_2][BPh_4] (2)$	-10.74 (dt, ² <i>J</i> (PH) = 21.1, ⁴ <i>J</i> (PH) = 6.1)	1.82 (s) 1.50 (s) 1.18 (s)	63.9 (d) 28.7 (t, ⁴ <i>J</i> (PP) = 8.5)	2010 (vw) v(RuH)? 1940 (vs) v(CO) 1043 (s) v(CS) 730 (s) v(CS ₂) _{sym} ? 706 (s)
$[RuCl(CO)(S_2CPCy_3)(PCy_3)_2][BPh_4]$ (3)		1.79 (s) 1.48 (s) 1.24 (s)	40.9 (d) 25.2 (t, ${}^{4}J(PP) = 5.7$)	1953 (vs) ν (CO) 949 (m) ν (CS) 738 (vs) 728 (vs) ν (CS ₂) _{sym} ? 705 (vs)
$RuClH(CO)(PCy_3)_2$ $RuClH(CO)_2(PCy_3)_2$	-24.7 (t, ² <i>J</i> (PH) = 18.3) -5.3 (t, ² <i>J</i> (PH) = 24.0)		45.5 (s) 49.9 (s)	1908 (vs) v(CO) 2030 (vs) v(CO) 1978 (m) v(RuH) 1945 (vs) v(CO)
$\operatorname{RuCl}_2(\operatorname{CO})(\operatorname{PCy}_3)_2$			34.5 (s)	1934 (vs) v(CO)

^a In CDCl₃. J values given in Hz. ^b In Nujol. Phosphine bands are not tabulated.

Figure 1. ¹H NMR spectrum of the hydride region of [RuH- $(CO)(S_2CPCy_3)(PCy_3)_2$ [BPh₄]. The pattern is centered at δ -10.75; the marker is 50 Hz wide.

betaine PR_3 group than to the PR_3 ligands.

The P-P coupling constant from PR₃ to S₂CPR₃ should be larger for isomer II, in which the S₂CPR₃ ligand is trans to the PR₃ ligands, than for isomer I, in which the S₂CPR₃ ligand is cis to the PR₃ ligands. For a similar complex, [RuCl- $(MeOH)(S_2CPEt_2Ph)(PEt_2Ph)_2][BPh_4]$, which is known to have PEt₂Ph ligands cis and trans to the S₂CPEt₂Ph ligand,⁶ the coupling constants vary by a factor of 3 (${}^{4}J(\text{cis PP}) = 3.5$ Hz, ${}^{4}J(\text{trans PP}) = 11.3 \text{ Hz})$. The values of ${}^{4}J$ for 1 and 2 are intermediate between these values, and we are unable to distinguish isomer I from II on the basis of the magnitude of ⁴J.

An analogue of 1, $[RuCl(CO)(S_2CPCy_3)(PCy_3)_2][BPh_4]$ (3), may be prepared by the addition of S_2CPCy_3 to a meth-

anol suspension of $RuCl_2(CO)(PCy_3)_2$ and $NaBPh_4$. The ³¹P and ¹H NMR spectra of 3 are similar to the spectra of 1 and 2, except that the hydride resonance is absent (see Table I). The analogous isomers (I, II) of 3 would have a sulfur atom or a carbonyl ligand trans to the chloro ligand, respectively, and the metal-chloride stretching frequency ($\nu(RuCl) = 274$ cm⁻¹) is consistent with either.^{2,10} Thus, we are unable to distinguish isomer I from isomer II on the basis of the metal-chlorine stretching frequency. The value of ^{4}J for 3 is slightly smaller than for 1 or 2 and is nearer to ${}^{4}J(\text{cis PP})$ rather than ⁴J(trans PP) for [RuCl(MeOH)(S₂CPEt₂Ph)-(PEt₂Ph)₂][BPh₄].⁶ Therefore, we propose that isomer I of 3 is formed. Isomer I should be favored over II for 1, 2, and 3 because of the sterically unfavorable cis arrangement of PCy₃ ligands in II.

Carbonyl sulfide reacts with $RuClH(CO)(PCy_3)_2$ in polar and nonpolar solvents to afford $RuClH(CO)_2(PCy_3)_2$. The fate of the sulfur in the reaction has not been determined, but we find no NMR spectroscopic evidence for the formation of $SPCy_3$, even if free PCy_3 is present. It is not surprising that carbonylation, rather than insertion to give [RuH(CO)- $(SOCPCy_3)(PCy_3)_2$ Cl, occurs. Unlike CS_2 , COS does not form a stable zwitterion complex with PCy₃, and metal-promoted C=S bond cleavage has been shown to be more facile for COS than for CS₂.¹¹

Experimental Section

 $RuCl_2(CO)(PCy_3)_2^2$ and $RuClH(CO)(PCy_3)_2^{12}$ were prepared as previously described. Carbonyl sulfide was obtained from the Matheson Gas Co., East Rutherford, NJ. Infrared spectra were recorded on a Perkin-Elmer 283 spectrometer. Proton and ³¹P NMR spectra were obtained on a JEOL FX90Q spectrometer. Peak positions are relative to tetramethylsilane and 85% phosphoric acid, respectively, with downfield values reported as positive. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, TN. All reactions were performed in air, unless otherwise noted.

[RuH(CO)(S₂CPCy₃)(PCy₃)₂[BPh₄] (1). Method A. Carbon disulfide (7 mL) was added to a suspension of $RuClH(CO)(PCy_3)_2$ (0.100 g in 20 mL of methanol). Sodium tetraphenylborate (0.5 g) was added to the purple solution. The solution was concentrated by

⁽¹⁰⁾ Lupin, M. S.; Shaw, B. L. J. Chem. Soc. A 1968, 741-749.
(11) Ibers, J. A.; Gaffney, T. R.; Schramm, K. D. "Coordination Chemistry-21" (IUPAC); Pergamon Press: Oxford and New York, 1981; pp 141-149.
(12) More F. G. Lagrabart, J. D. Bard, Then Chin. D. 1977, 511

Moers, F. G.; Langhout, J. P. Recl. Trav. Chim. Pays-Bas 1972, 91, (12)591-600.

rapid purging with N₂ while warming to ~40 °C. The purple suspension was cooled to -30 °C, and the dark red solids were collected by filtration and dried under vacuum. The crude yield was 0.076 g. The predominant product (~40% of the solid) is [RuH-(CO)(S₂CPCy₃)₂][BPh₄], as determined by comparison of ³¹P and ¹H NMR spectra with those of a pure sample, which was prepared by method B. Additional products, including a ruthenium hydride complex (δ -12.6 (t, J = 20.7 Hz)), were detected via NMR spectroscopy.

Method B. A suspension of RuClH(CO)(PCy₃)₂ (0.160 g) and S₂CPCy₃ (0.0784 g in 35 mL of absolute ethanol) was stirred for 20 min. The purple solution was filtered, and 0.30 g NaBPh₄ was added to the filtrate. The purple suspension was cooled to -20 °C, and the purple solid was collected by filtration, washed with ethanol, and dried under vacuum. The yield was 0.177 g (59%). Anal. Calcd for C₈₀H₁₂₀BOP₃RuS₂: C, 70.31; H, 8.85; P, 6.80; S, 4.70. Found: C, 70.57; H, 9.02: P, 6.49; S, 4.55.

[RuH(CO)(S₂CPEt₃)(PCy₃)₂[BPh₄] (2). A suspension of RuClH(CO)(PCy₃)₂ (0.135 g) and S₂CPEt₃ (0.054 g in 20 mL of anhydrous methanol) was stirred for 5 min. Carbon disulfide (2.0 mL) was then added to the suspension, and the clear purple solution was stirred for 5 min. Addition of 0.20 g of NaBPh₄ gave a purple precipitate which was collected by filtration, washed with cold methanol, and dried under vacuum. The yield was 0.188 g (84%). Anal. Calcd for C₆₈H₁₀₂BOP₃RuS₂: C, 67.81; H, 8.54; P, 7.71; S, 5.32. Found: C, 67.69; H, 8.37; P, 7.45: S, 5.50.

[RuCl(CO)(S_2CPCy_3)₂(PCy₃)₂**[BPh**₄] (3). A suspension of RuCl₂(CO)(PCy₃)₂ (0.080 g) and S_2CPCy_3 (0.24 g in 40 mL of deoxygenated methanol) was stirred for 0.5 h under nitrogen at 40 °C. The purple solution was cooled to 20 °C and filtered. Addition of 0.40 g of NaBPh₄ to the filtrate gave a red-brown solid. The solid was recrystallized three times from chloroform-methanol to give a dark red solid which analyzed as [RuCl(CO)(S_2CPCy_3)(PCy₃)₂]-[BPh₄]-CHCl₃. The yield was 0.065 g (40%). Anal. Calcd for

RuClH(CO)₂(**PCy**₃)₂. Method A. Carbonyl sulfide was bubbled through a solution of RuClH(CO)(PCy₃)₂ (0.102 g in 10 mL of deoxygenated toluene) until the color faded from yellow to colorless. The solvent was removed under vacuum, and the white solid which remained was recrystallized from CHCl₃-MeOH to give the complex as white crystals. The yield was 0.069 g (60%). The complex was identified by comparison of ¹H NMR and IR spectra with those of an authentic sample.¹³ The complex has previously been assigned a stereochemistry with trans PCy₃ ligands and cis CO ligands.¹³ See Table I for spectral data.

Method B. Carbonyl sulfide (~10 g) was condensed into a liquid-nitrogen-cooled pressure reactor which contained 0.054 g of RuClH(CO)(PCy₃)₂, 0.10 g of PCy₃, and 8 mL of deoxygenated methanol. The vessel was allowed to warm to room temperature (*Caution*! 12 atm). The metal complex dissolved to give an orange solution which faded to colorless and precipitated a white solid. The carbonyl sulfide was distilled off, and the white solid was collected by filtration and dried under vacuum. The complex was identified by comparison of ¹H NMR and IR spectra with those of an authentic sample.

Acknowledgments. We thank Johnson-Matthey, Inc., Malvern, PA, for the loan of $RuCl_3$ ·3H₂O used in this work. This research was kindly supported by the National Science Foundation (Grant CHE80-09671).

Registry No. 1, 80697-67-2; 2, 80697-69-4; 3, 80697-71-8; RuClH(CO)(PCy₃)₂, 40935-25-9; RuClH(CO)₂(PCy₃)₂, 55100-76-0; RuCl₂(CO)(PCy₃)₂, 52524-94-4; CS₂, 75-15-0.

Contribution from the Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Stabilization of RN=NN=PR₃. Preparation and Structural Characterization of Stable Tetraarylphosphazide Complexes Containing Molybdenum and Tungsten

GREGORY L. HILLHOUSE, GARY V. GOEDEN, and BARRY L. HAYMORE*

Received October 15, 1981

The reaction of aromatic azides $(R'N_3)$ with $MBr_2(CO)_3(PPh_3)_2$ (M = Mo, W; Ph = C_6H_5 ; tol = p-CH₃C₆H₄) in dry methylene chloride at 20 °C affords $MBr_2(CO)_3(R'N_3PPh_3)$, N₂, and R'N=PPh₃ (R' = Ph, tol). The phosphazide complexes exhibit remarkable stability with respect to N₂ loss. In contrast to the Mo(II) and W(II) complexes, ReCl₃(CH₃CN)(PPh₃)₂ and ReCl₃(PPh₂Me)₃ yield ReCl₄(PR₃)₂ upon treatment with the same aryl azides. Triclinic needles of WBr₂(CO)₃(tolN₃PPh₃) were grown from chloroform-ether and crystallized in space group $C_1^1 - PI$ with Z = 2, a = 13.715 (6) Å, b = 9.904 (5) Å, c = 10.397 (5) Å, $\alpha = 100.98$ (2)°, $\beta = 83.11$ (2)°, and $\gamma = 85.80$ (1)°. An X-ray diffraction study at -145 (5) °C showed the complex to be monomeric and seven-coordinate. The tolyl azide had inserted into the W-P bond, forming a phosphazide ligand (tolN₃PPh₃) which is bound to W in a chelating fashion through the α and γ nitrogen atoms; the N₃W Å, W-N(3) = 2.220 (5) Å, N(1)–N(2) = 1.279 (6) Å, N(2)–N(3) = 1.364 (6) Å, N(3)–P = 1.672 (5) Å, N(1)–N(2) = 1.279 (6) Å, N(2)–N(3) = 1.364 (6) Å, N(3)–N(2) = 96.8 (3)°, N(1)–N(2)–N(3) = 103.8 (4)°. The full-matrix, least-squares refinement converged to R(F) = 0.028 and $R_w(F) = 0.037$ for 4066 unique data with $F_0^2 > 3\sigma(F_0^2)$.

Introduction

The reaction of tertiary phosphines with organic azides is known to proceed via a reactive intermediate, R'NNNPR₃, which decomposes in a bimolecular process to dinitrogen and the corresponding phosphoranimine¹ (eq 1 and 2). These

$$R'N_3 + PR_3 \xrightarrow{low} R'N = NN = PR_3$$
(1)

$$2R'N_{3}PR_{3} \xrightarrow{\text{room}} 2R'N = PR_{3} + 2N_{2}$$
(2)

intermediates, which were originally named "phosphazides" by Staudinger,² are only rarely stable under ambient conditions; when $R = R' = C_6H_5$, the phosphazide decomposes rapidly at temperatures above -20 °C. Certain phosphazides

0020-1669/82/1321-2064\$01.25/0 © 1982 American Chemical Society

⁽¹³⁾ Moers, F. G.; ten Hoedt, R. W. M.; Langhout, J. P. J. Inorg. Nucl. Chem. 1974, 36, 2279-2282.

Mosby, W. L.; Silva, M. L. J. Chem. Soc. 1965, 1003. Horner, L.; Gross, A. Justus Liebigs Ann. Chem. 1955, 591, 117.

⁽²⁾ Staudinger, H.; Hauser, E. Helv. Chim. Acta 1921, 4, 861. Though unsystematic, the phosphazide nomenclature is easy to use and descriptive in its own right. Chemical Abstracts Service names RNNNPR₃ as a derivative of phosphoranylidenetriazene.